
Analysis of Al6061, Ti-6Al-4V, and SS316L with varying lattice for
a stator housing design leveraging generative design engineering

Submitted by:

Adam Michalak

AMFG 521 – Design for Additive Manufacturing

May 11, 2022

2

Executive Summary

A scaled down model of a stator housing was modeled as a unit cell to evaluate material and lattice type for guiding

the design decision making process. Three materials were evaluated, Stainless Steel (316L), Titanium (Ti-6AL-4V),

and Aluminum (6061) and for each material six lattice types were evaluated on the unit cell geometry. For each

material type the highest performing lattice type was SplitP. The best performing material was Aluminum 6061. The

SplitP Aluminum 6061 model is recommended to be studied further as it had the strongest thermal performance

with a minimum temperature of 347 Celsius and relatively low mass of 111.3 grams. Further verification and

Validation is required before placing this lattice type and material into production for the stator housing.

3

Introduction

Heat transfer and lattice structure analysis of electric motors can require extensive verification and validation

depending on the application and end-user of the motor. Simulating heat transfer on a large part or assembly can

be time consuming and computationally expensive. To give quick feedback to a designer or design team, models are

often simplified to help guide decisions and allocate time to areas which show promising results. Once initial results

have been identified further verification and validation of both the simplified and full-scale model can take place.

In this study an electric motor stator housing has been simplified down to a design domain of a small unit cell of 50

mm3. This reduction in size was made to provide quick verification of various materials and lattice cell types. Another

reason the cell domain is small is that this study utilized Generative Design Engineering (GDE). By utilizing GDE many

lattice types and materials can be studied quickly if the computational time is low for each lattice type. The intent of

this stator housing is to be additively manufactured due to the housings complex geometry which is explored in this

analysis. This study has identified the best material and best lattice type so that a design team can provide further

verification and validation before moving forward with an additive manufacturing (AM) process and placing the

stator housing into service. The materials that were studied include Aluminum (Al6061), Titanium (Ti-6Al-4V), and

Stainless Steel (SS316L). The different lattice types that were studied are Gyroid, Schwarz, Diamond, Lidinoid, SplitP,

and Neovius.

Methods

This study utilized nTopology Design and Simulation Software version 3.23. Another software that was utilized was

MathWork’s MATLAB R2022A. The geometry of the unit cell was provided by Dr. Anthony Petrella from the Colorado

School of Mine’s Advanced Manufacturing program. The unit cell is comprised of two parts a base and a fin domain.

The base is 50 mm wide by 50 mm depth by 5 mm in height. The second part is the fin domain which is a cube that

is 50 mm3. Both parts can be seen below in Figure 1. The fin domain was the area that the various lattice types were

applied to. The base represents the stator housing and has a temperature of 673K (400C) applied to it.

Fig. 1. Fin domain in blue with the base in red.

4

Generative Design Engineering (GDE) was utilized to manipulate the lattice cell type to make this design exploration

study as efficient as possible. Different nTopology (nTop) models were also set up along with respective MATLAB

scripts to manipulate and output the three different metals that were studied. The window’s command prompt was

used to create a input template and output template using nTop’s command language prior to utilizing the MATLAB

script. Table 1 below shows the different nTop file names and MATLAB script names for each material type. Relevant

material properties for each of these materials can be found in the appendix of this report.

Table 1. File names for the nTopology and MATLAB files

 Aluminum (Al6061) Stainless Steel (SS316L) Titanium (Ti-6Al-4V)

nTopology File Name gde_6061.ntop gde_316.ntop gde_ti6.ntop

MATLAB File Name gde_6061.m gde_316.m gde_ti6.m

The nTop software was set up with four inputs as shown in Figure 2 below. These inputs are the following: cell_type,

cell_size, thickness, and path. For this GDE study just the cell_type was manipulated using a MATLAB script. The

material type and its linear elastic properties, density, and thermal properties were input into nTop as well, special

attention had to be paid to density as it was used in multiple objects. The output for the model was a group of seven

parameters as seen in Figure 3.

Fig. 2. nTopology inputs for GDE with only the cell_type being manipulated for this study

5

Fig. 3. nTopology output group for GDE

Although the nTopology trees varied slightly based on material type, an example of the nTop tree structure can be

seen in Figure 4 below. The foundation for the nTopology file and MATLAB file were provided by Colorado School of

Mines.

Fig. 4. The complete nTop tree with inputs, an output, and objects required to build and simulate the model

6

The MATLAB script was setup to output data in a text file and a MATLAB script was ran for each material type that

was analyzed. The three output data files’ names can be seen in Table 2 below. The output data for each analysis

will be in the appendix of this report as well as one of the scripts used for this analysis.

Table 2. Output data file names from running the MATLAB scripts for each material

 Aluminum (Al6061) Stainless Steel (SS316L) Titanium (Ti-6Al-4V)

File Name outputdata_6061.txt outputdata_316.txt outputdata_ti6.txt

Six different lattice cell types were explored using the MATLAB script and referred to by their integer and

manipulated using nToplogy’s command language ‘ntopcl’. The following lattice cell types were analyzed for each

material and had an assigned value of 0-5 respectively, Gyroid, Schwarz, Diamond, Lidinoid, SplitP, Neovius. These

lattice cell types will be further analyzed in the results section of this study. The thickness of the lattice was chosen

to be 10mm. There was a Continuous Boolean Union put in place to smooth the topology from the base of the unit

cell to the fin domain.

A tetrahedral mesh with a quadratic geometric order was applied to each of the different lattice cell types with

varying nodes and elements. A mesh convergence study was not performed for this study, but it is recommended

that if a material and lattice cell type is chosen to move forward that a mesh convergence study is performed. The

mesh will be further analyzed in the results section of this report.

Results

The first results that will be presented are the mesh results for each of the different lattice types. Below in Figures 5

– 10 there will be each of the lattice types with the mesh plotted on the geometry. In Table 3 below, the information

regarding each lattice type’s mesh will be presented which is independent of the material type.

Fig. 5. Gyroid lattice cell type shown with a mesh and a color contour plotted representing temperature

7

Fig. 6. Schwarz lattice cell type shown with a mesh and a color contour plotted representing temperature

Fig. 7. Diamond lattice cell type shown with a mesh and a color contour plotted representing temperature

8

Fig. 8. Lidinoid lattice cell type shown with a mesh and a color contour plotted representing temperature

Fig. 9. Split P lattice cell type shown with a mesh and a color contour plotted representing temperature

9

Fig. 10. Neovius lattice cell type shown with a mesh and a color contour plotted representing temperature

Table 3. Mesh information for each lattice cell type

Lattice Cell Type Number of Nodes Number of Elements

Gyroid 90610 57857

Schwarz 133544 89043

Diamond 103323 65651

Lidinoid 170762 108167

Split P 132690 81896

Neovius 180214 124419

The following results are for each material type. These results were output from the three MATLAB scripts to the

specific output files as described in the methods section of this report. The mass of the fin domain, volume of the

fin domain, and surface area of the fin domain are the same for each lattice cell type as this is for the 50mm3 domain

for the unit cell. The mass of the lattice cell type and minimum temperature will be presented in Tables 4, 5, and 6

along with other results for each material and their respective lattice type.

10

Table 4. Output results for Aluminum (Al6061)

Lattice

Cell Type

Mass of Fin

Domain (g)

Mass of

Lattice Cell

Type (g)

Volume of

Fin Domain

(mm3)

Volume of

Lattice

(mm3)

Surface Area

of Fin

Domain

(mm2)

Surface

Area of

Lattice

(mm2)

Minimum

Temperature

(C)

Gyroid 337.500 82.045 125000.000 30387.156 15051.270 14802.477 371.263

Schwarz 337.500 148.629 125000.000 55047.653 15051.270 16063.792 380.708

Diamond 337.500 98.333 125000.000 36419.811 15051.270 17838.167 369.818

Lidinoid 337.500 143.323 125000.000 53082.594 15051.270 23614.154 373.502

Split P 337.500 111.327 125000.000 41232.172 15051.270 23495.644 347.134

Neovius 337.500 234.056 125000.000 86687.321 15051.270 17770.512 388.039

Table 5. Output results for Stainless Steel (SS316L)

Lattice

Cell Type

Mass of Fin

Domain (g)

Mass of

Lattice Cell

Type (g)

Volume of

Fin Domain

(mm3)

Volume of

Lattice

(mm3)

Surface Area

of Fin

Domain

(mm2)

Surface

Area of

Lattice

(mm2)

Minimum

Temperature

(C)

Gyroid 1000.000 243.097 125000.000 30387.156 15051.270 14802.477 229.214

Schwarz 1000.000 440.381 125000.000 55047.653 15051.270 16063.792 272.019

Diamond 1000.000 291.358 125000.000 36419.811 15051.270 17838.167 223.005

Lidinoid 1000.000 424.661 125000.000 53082.594 15051.270 23624.072 238.283

Split P 1000.000 329.857 125000.000 41232.172 15051.270 23495.644 152.199

Neovius 1000.000 693.499 125000.000 86687.321 15051.270 17770.512 311.556

11

Table 6. Output results for Titanium (Ti-6Al-4V)

Lattice

Cell Type

Mass of Fin

Domain (g)

Mass of

Lattice Cell

Type (g)

Volume of

Fin Domain

(mm3)

Volume of

Lattice

(mm3)

Surface Area

of Fin

Domain

(mm2)

Surface

Area of

Lattice

(mm2)

Minimum

Temperature

(C)

Gyroid 550.000 133.703 125000.000 30387.156 15051.270 14802.477 121.523

Schwarz 550.000 242.210 125000.000 55047.653 15051.270 16063.792 168.044

Diamond 550.000 160.247 125000.000 36419.811 15051.270 17838.167 115.141

Lidinoid 550.000 233.563 125000.000 53082.594 15051.270 23618.664 129.951

Split P 550.000 181.422 125000.000 41232.172 15051.270 23495.644 62.820

Neovius 550.000 381.424 125000.000 86687.321 15051.270 17770.512 219.203

In Figures 11-13 a 4D plot for each material type is shown with the fourth dimension being color which is related to

surface area of the lattice, these are the results from Tables 4-6 visualized.

Fig. 11. 4D Plot for Aluminum (Al6061)

12

Fig. 12. 4D Plot for Stainless Steel (SS316L)

Fig. 13. 4D Plot for Titanium (Ti-6Al-4V)

13

Figure 14-16 are nodal temperature scatter plots, however, because there are so many data points, they resemble

a color contour plot.

Fig. 14. Scatter plot of Aluminum (Al6061) lattice types

14

Fig. 15. Scatter plot of Stainless Steel (SS316L) lattice types

15

Fig. 16. Scatter plot of Titanium (Ti-6Al-4V) lattice types

Discussion

The purpose of this analysis was to explore various lattice types and materials using GDE to guide a design decision

on which material and lattice type would be best to focus design and simulation time on. The volume of the fin

domain and surface area of the fin domain are the same for each lattice and material type. The mass for each lattice

type and material varies with Aluminum strongest performance in the mass category. For all materials SplitP was

the best lattice structure in terms of thermal performance because of the low minimum temperature it was able to

achieve which indicates it would perform well as a heat exchanger. The best performing material in terms of thermal

performance was Aluminum which had the highest minimum temperatures for each lattice type which is indicative

of Aluminum’s thermal conductivity performance when compared to Stainless Steel and Titanium. As expected, the

mass of the Aluminum lattice types were also the lowest when compared to Stainless Steel and Titanium. The lattice

type with the lowest mass was Gyroid for each material.

The best choice for choosing a strong performing material and lattice type for a stator housing is dependent on the

application. For this application we will focus on the lightest mass and best thermal performance which would be

the SplitP lattice type made from Aluminum, this material and lattice offers a relatively low mass and strong thermal

performance as a heat exchanger due to its ability to conductively transfer heat. One downside is the complexity of

the lattice type as it may pose difficulties if it was chosen to be used in a regulated industry. The reason this lattice

16

type would be difficult is because the geometry would be hard to inspect and certify which ties in with the validation

of the part.

Overall, it is recommended that further verification and validation is carried out if a lattice and material type is

chosen. For example, one short fall of this study is that convective heat transfer for each lattice type was not studied.

Another reason further verification should be carried out before moving forward with a prototype is that a mesh

convergence study was not performed. The design team should feel confident that Aluminum is a strong material

choice but more specific attention should be paid to the lattice type for reasons previously mentioned.

References

1. The Online Materials Information Resource. MatWeb. (n.d.). Retrieved May 11, 2022,

from https://www.matweb.com/search/DataSheet.aspx

Appendix

Material Properties

 Density

(mm-3*g)

Coefficient of Thermal

Expansion (K-1)

Young’s

Modulus (Pa)

Poisson’s

Ratio

Conductivity

(mm*s-3*g*K)

Specific Heat

(mm2*s-2*K-1)

Al6061 0.0027 2.15 e-5 6.89 e+10 0.33 1.67 e+08 8.96 e+08

SS316L 0.008 1.3 e-5 1.93 e+11 0.28 1.63 e+07 5 e+08

Ti-6Al-4V 0.0044 0.7 e-5 1.138 e+11 0.342 6.7 e+06 5.263 e+08

MATLAB Script provided by Colorado School of Mines and edited by the author of this report

clc;clear all;close all;

% ntop and ntopcl commaands are in the Windows path by default, so you can
% just type the command without any other path info
exe = 'ntopcl';
% NOTE: all files should be in the same folder... this is the nTop model
nTopFile='gde_ti6.ntop';
% provide an input JSON file... this is generated in a separate operation by
% running ntopcl with the -t flag to create an input template
input_file='input_template.json';
% use the built-in Matlab function to decode the JSON file into a struct
in = jsondecode(fileread(input_file));

% let's look at six different sets of input values using the range 0...5
% for now, we're only changing the lattice unit cell type in this example
for i=0:5
 % modify input variables
 % this is the lattice cell type (Gyroid,Shwarz,etc)
 in(1).inputs{1,1}.value = i;
 % this is the cell size (mm)
 in(1).inputs{2,1}.value = 50.0;
 % this is the TPMS wall thickness (mm)

17

 in(1).inputs{3,1}.value = 10.0;
 % this adds an index to the output filename so we can keep many STL
 in(1).inputs{4,1}.value = ['./nodal_temp_',num2str(i),'.txt'];

 % write JSON file format with the updated input values
 InputFile = ['input_',num2str(i),'.json'];
 OutputFile = ['output_',num2str(i),'.json'];
 JsonStr = jsonencode(in);
 JsonStr = strrep(JsonStr, ',', sprintf(',\r'));
 JsonStr = strrep(JsonStr, '[{', sprintf('[\r{\r'));
 JsonStr = strrep(JsonStr, '}]', sprintf('\r}\r]'));
 fid = fopen(InputFile, 'w');
 if fid == -1, error('Cannot create JSON file'); end
 fwrite(fid, JsonStr, 'char');
 fclose(fid);

 % compose a string containing the execution command
 Arguments=sprintf('%s -j %s -o %s %s',exe,InputFile,OutputFile,nTopFile);

 % run the ntopcl command
 system(Arguments);

 % parse the output data in the order mass (g), volume (mm^3), surf_area (mm^2),
minimum temperature (C)
 mass_box(i+1,1) = jsondecode(fileread(OutputFile)).components(1).value.mass*1e3;
% mass box (g)
 mass_fin(i+1,1) = jsondecode(fileread(OutputFile)).components(2).value.mass*1e3;
% mass fin only (g)
 volm_box(i+1,1) = jsondecode(fileread(OutputFile)).components(3).value.val*1e9;
% vol box (mm^3)
 volm_fin(i+1,1) = jsondecode(fileread(OutputFile)).components(4).value.val*1e9;
% vol fin only (mm^3)
 surf_box(i+1,1) = jsondecode(fileread(OutputFile)).components(5).value.val*1e6;
% surf box (mm^2)
 surf_fin(i+1,1) = jsondecode(fileread(OutputFile)).components(6).value.val*1e6;
% surf fin only (mm^2)
 temp_min(i+1,1) = jsondecode(fileread(OutputFile)).components(7).value.val-273;
% min temp fin (C)

end

% assemble the output data in columns following the same order as shown
% above and clearly written below (mass, volume, surf area, printing time)
output_data = [mass_box mass_fin volm_box volm_fin surf_box surf_fin temp_min];
% save all the output data in an tab-delimited text file
save 'outputdata_ti6.txt' output_data -ascii
% **
% FOR PLOTTING Outcome Metrics
% **
% if you choose to run the above analysis with Python, then you just need
% the remaining lines below here to plot the data in Matlab... you can
% highlight all the lines below, right-click, and choose "Evaluate Selection"
% load the output_data.txt file into a data array
data = load('outputdata_ti6.txt');
% save each column of the data array in its appropriate variable

18

mass_box = data(:,1); mass_fin = data(:,2); volm_box = data(:,3); volm_fin =
data(:,4);
surf_box = data(:,5); surf_fin = data(:,6); temp_min = data(:,7);
% compute the ratio of surface area to volume for each lattice type
sa_v = surf_fin./volm_fin; % this is the surface area to volume ratio
% normalize the sa_v data so the max value across lattice types is 1.0
sa_v_norm = sa_v/max(sa_v); % this is a normalized sa_v vector (0,1)
% use scatter plot to visualize the data... the first three arguments
% correspond to the x, y, and z axes, the fourth argument controls size of
% each marker based on the value of sa_v_norm, the fifth argument controls
% the color of each marker based on the value of surface area
h = scatter3(sa_v_norm,temp_min,volm_fin,500*sa_v_norm,surf_fin,'filled');
% label the x, y, and z axes on the scatter plot
xlabel('Complexity'); ylabel('Min Temp (°C)'); zlabel('Lattice Volume (mm^3)');
% this makes a color legend to interpret the magnitude of surface area based on color
c = colorbar; c.Label.String = 'Surface Area (mm^2)';
% these lines apply text labels to we can remember which lattice type is which
text(sa_v_norm(1),temp_min(1),volm_fin(1),'0:Gyroid');
text(sa_v_norm(2),temp_min(2),volm_fin(2),'1:Schwarz');
text(sa_v_norm(3),temp_min(3),volm_fin(3),'2:Diamond');
text(sa_v_norm(4),temp_min(4),volm_fin(4),'3:Lidinoid');
text(sa_v_norm(5),temp_min(5),volm_fin(5),'4:SplitP');
text(sa_v_norm(6),temp_min(6),volm_fin(6),'5:Neovius');

% **
% FOR PLOTTING Nodal Temperatures
% **
figure; colormap(jet);
subplot(2,3,1)
t = load('nodal_temp_0.txt');
h = scatter3(t(:,1),t(:,2),t(:,3),[],t(:,4)-273,'filled');
c = colorbar; c.Label.String = 'Temperature (°C)'; axis equal; view(-180,-30);
title('0:Gyroid');
subplot(2,3,2)
t = load('nodal_temp_1.txt');
h = scatter3(t(:,1),t(:,2),t(:,3),[],t(:,4)-273,'filled');
c = colorbar; c.Label.String = 'Temperature (°C)'; axis equal; view(-180,-30);
title('1:Schwarz');
subplot(2,3,3)
t = load('nodal_temp_2.txt');
h = scatter3(t(:,1),t(:,2),t(:,3),[],t(:,4)-273,'filled');
c = colorbar; c.Label.String = 'Temperature (°C)'; axis equal; view(-180,-30);
title('2:Diamond');
subplot(2,3,4)
t = load('nodal_temp_3.txt');
h = scatter3(t(:,1),t(:,2),t(:,3),[],t(:,4)-273,'filled');
c = colorbar; c.Label.String = 'Temperature (°C)'; axis equal; view(-180,-30);
title('3:Lidinoid');
subplot(2,3,5)
t = load('nodal_temp_4.txt');
h = scatter3(t(:,1),t(:,2),t(:,3),[],t(:,4)-273,'filled');
c = colorbar; c.Label.String = 'Temperature (°C)'; axis equal; view(-180,-30);
title('4:SplitP');
subplot(2,3,6)
t = load('nodal_temp_5.txt');

19

h = scatter3(t(:,1),t(:,2),t(:,3),[],t(:,4)-273,'filled');
c = colorbar; c.Label.String = 'Temperature (°C)'; axis equal; view(-180,-30);
title('5:Neovius');

